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Computational Neuroanatomy

With the increasing resolution of anatomical scans of
the human brain and the sophistication of image pro-
cessing techniques there have emerged, recently, a
large number of approaches to characterizing differ-
ences in the shape and neuroanatomical configuration
of different brains. One way to classify these ap-
proaches is to broadly divide them into those that deal
with 'differences in brain shape and those that deal
with differences in the local composition of brain tissue
after macroscopic differences in shape have been dis-
counted. The former use the deformation fields that
map any individual brain onto some standard refer-
ence as the characterization of neuroanatomy, whereas
the latter compare images on a voxel basis after the
deformation fields have been used to spakially normal-
ize the images. In short, computational neuroanatomic
techniques can either use the deformation fields them-
selves or use these fields to normalize images that are
then entered into an analysis of regionally specific dif-
ferences. In this way, information about overall shape
(deformation fields) and residual anatomic differences
inherent in the data (normalized images) can be parti-
tioned.

Voxel-Based Morphometry — The methods, Ashburner & Friston, Neuroimage 1999



Jacobian of the transformation is informative of local
changes in volume (Tensor-based-morphometry: TBM)

Single Patient brain or Control Template
patient template_..

ANTS software

— (Avants et al. 2008 &
2011)

Similarity metric:

— cross correlation

Transformation model: Log of the Det of the Jacobian of the

— Diffeomorphic . : : :
(symmetric mapping Transformation Patient brain registered
(Syn)) to the Control template




Applications of TBM based on T1-weighted
Images

Alzheimer disease (Freeborough & Fox 1998)

Brain development (Thompson et al.2000)
Huntington (Kipps et al. 2005)

Fragile X syndrome (Lee et al. 2007)

Frontotemporal dementia (Brambati 2007)

Williams syndrome (Chiang et al 2007)

HIV/AIDs (Chiang et al. 2007, Lepore 2008)
Schizophrenia (Whitford et al. 2007, Hua et al. 2008)
TBI (Kim et al. 2008)

Stress (Hanson et al. 2010)



Our Hypothesis:

Diffusion MRI provides clear delineation of
anatomical structures that can not be separated
in T1- and T2-WI (e.g. individual pathways).

Therefore, tensor-based morphometry (TBM)
using DTI-driven registration (DTBM) should be
more accurate than T1WI-TBM.



Examples in the literature of TBM with
registration driven by diffusion MRI data

Registration based only on FA images

Multiple sclerosis and amyotrophic lateral sclerosis (Pagani et al.
2007)

Alzheimer’s Disease (Oishi et al. 2011)

Registration based on tensor deviatoric

High-dimensional spatial normalization of diffusion tensor images improves
the detection of white matter differences: an example study using
amyotrophic lateral sclerosis. Zhang et al. (2007). IEEE transactions on
medical imaging, 26(11), 1585-1597.

Only one paper with registration based on all tensor elements

Dense feature deformation morphometry: Incorporating DTI data into
conventional MRI morphometry Studholme et al., Medical image analysis
12.6 (2008): 742-751.
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ARTICLE INFO ABSTRACT

Article history: Voxel-based analysis of diffusion MRI data is increasingly popular. However, most white matter voxels
Received 8 January 2016 contain contributions from multiple fibre populations (often referred to as crossing fibres), and therefore
Accepted 13 September 2016 voxel-averaged quantitative measures (e.g. fractional anisotropy) are not fibre-specific and have poor
Available online 14 September 2016 interpretability. Using higher-order diffusion models, parameters related to fibre density can be extracted
Keywords: for individual fibre populations within each voxel (‘fixels’), and recent advances in statistics enable the
Diffusion multi-subject analysis of such data. However, investigating within-voxel microscopic fibre density alone
MRI does not account for macroscopic differences in the white matter morphology (e.g. the calibre of a fibre
Fixel bundle). In this work, we introduce a novel method to investigate the latter, which we call fixel-based
Fibre‘ morphometry (FBM). To obtain a more complete measure related to the total number of white matter
Density axons, information from both within-voxel microscopic fibre density and macroscopic morphology must

Cross-section be combined. We therefore present the FBM method as an integral piece within a comprehensive fixel-

based analysis framework to investigate measures of fibre density, fibre-bundle morphology (cross-
section), and a combined measure of fibre density and cross-section. We performed simulations to de-
monstrate the proposed measures using various transformations of a numerical fibre bundle phantom.
Finally, we provide an example of such an analysis by comparing a clinical patient group to a healthy
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WikwpepiA  Brain morphometry
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From Wikipedia, the free encyclopedia

Pattern based morphometry | edit]

Pattern based morphometry (PBM) is a method of brain morphometry first put forth in PBM.[4! It builds upon DBM &
As opposed to typical voxel based approaches which depend on univariate statistical tests at specific voxel locatior
this is that the inferences are not made locally as in VBM or DBM but globally. This allows the method to detect if ¢
single voxels. Also the method is more robust to variations in the underlying registration algorithms as compared to

Surface-based morphometry [ edit]
Main article: Surface-based morphometry

Once the brain is segmented, the boundary between different classes of tissue can be reconstructed as a surface ¢
results of such analyses can be projected.

Diffusion-weighted MR-based brain morphometry |edit]

Fiber-tracking techniques [ edit ]

Nerve fiber-tracking techniques are the latest offspring of this suite of MR-based morphological approaches. They ¢
or diffusion-spectrum imaging (e.g. Douaud et al., 2007 and O'Donnell et al., 2009).

Diffeomorphometry |edit]

Diffeomorphometry!S! is the focus on comparison of shapes and forms with a metric structure based on diffeomor.
registration,[”] introduced in the 90's, is now an important player with existing codes bases organized around ANTS

antivahr 11iead anmniitatinnal rndac fAar Aanctriintina ArarraennnAdannac hahaiaan Anardinata cvectame hacad An enare:



Goal:

Achieve a robust and accurate diffusion
MRI based registration that could be
used to perform TBM-DTI.
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EPI distortions & Tensors
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Before correction After correction
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ARTICLE INFO ABSTRACT
Article history: We propose an echo planar imaging (EPI) distortion correction method ( DR-BUDDI), specialized for diffusion MRI,
Accepted 19 November 2014 which uses data acquired twice with reversed phase encoding directions, often referred to as blip-up blip-down

Available online 26 November 2014 acquisitions. DR-BUDDI can incorporate information from an undistorted structural MRI and also use diffusion-

weighted images (DWI) to guide the registration, improving the quality of the registration in the presence of
L large deformations and in white matter regions. DR-BUDDI does not require the transformations for correcting
Echo planar imaging . . . . . s .
Diffusion tensor imaging blip-up and blip-down images to be the exact inverse of each other. Imposing the theoretical “blip-up blip-
Reversed phase encoding down distortion symmetry” may not be appropriate in the presence of common clinical scanning artifacts such
Diffeomorphic image registration as motion, ghosting, Gibbs ringing, vibrations, and low signal-to-noise. The performance of DR-BUDDI is evaluated
with several data sets and compared to other existing blip-up blip-down correction approaches. The proposed
method is robust and generally outperforms existing approaches. The inclusion of the DWIs in the correction pro-
cess proves to be important to obtain areliable correction of distortions in the brain stem. Methods that do not use
DWIs may produce a visually appealing correction of the non-diffusion weighted images, but the directionally
encoded color maps computed from the tensor reveal an abnormal anatomy of the white matter pathways.
© 2014 Elsevier Inc. All rights reserved.
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ARTICLE INFO

Article history:

Received 17 November 2015
Accepted 20 February 2016
Available online 28 February 2016

Keywords:

Diffusion tensor imaging
Diffeomorphic image registration
Fiber tractography

ABSTRACT

In this work, we propose DR-TAMAS (Diffeomorphic Registration for Tensor Accurate alignMent of Anatomical
Structures), a novel framework for intersubject registration of Diffusion Tensor Imaging (DTI) data sets. This
framework is optimized for brain data and its main goal is to achieve an accurate alignment of all brain structures,
including white matter (WM), gray matter (GM), and spaces containing cerebrospinal fluid (CSF). Currently most
DTI-based spatial normalization algorithms emphasize alignment of anisotropic structures. While some
diffusion-derived metrics, such as diffusion anisotropy and tensor eigenvector orientation, are highly informative
for proper alignment of WM, other tensor metrics such as the trace or mean diffusivity (MD) are fundamental for
a proper alignment of GM and CSF boundaries. Moreover, it is desirable to include information from structural
MRI data, e.g., T,-weighted or T,-weighted images, which are usually available together with the diffusion
data. The fundamental property of DR-TAMAS is to achieve global anatomical accuracy by incorporating in its
cost function the most informative metrics locally. Another important feature of DR-TAMAS is a symmetric
time-varying velocity-based transformation model, which enables it to account for potentially large anatomical
variability in healthy subjects and patients. The performance of DR-TAMAS is evaluated with several data sets
and compared with other widely-used diffeomorphic image registration techniques employing both full tensor
information and/or DTI-derived scalar maps. Our results show that the proposed method has excellent overall
performance in the entire brain, while being equivalent to the best existing methods in WM.

© 2016 Elsevier Inc. All rights reserved.




DR-TAMAS main features

Uses all features of the diffusion tensor to achieve good
alignment of white matter, gray matter, and CSF

Large deformation mapping capabilities
Tensor reorientation during optimization

If desired, can use complementary information from
anatomical images such as T1W or T2W structural images

Provides robust atlas creation strategies

Can deal with lesion regions (e.g. tumors) or missing
tissue.



Native morphology (AC-PC aligned)




Registered using FA (FSL)




Registered using deviatoric tensor (DTI-TK)




Registered using DR-TAMAS
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Application to Hereditary Spastic Paraplegia

DTBM localizes disease to specific white matter pathways
DTBM results are consistent with selective involvement of long range
white matter pathways

« Hereditary Spastic Paraplegia (HSP) is a group of
neurodegenerative disorders characterized by lower limb
weakness & spasticity.

« The pure form has only motor involvement

« SPG11 is a subtype of HSP with mutation in the SPG11 gene
which encodes for a protein involved in the maintenance of axons.

« HSP-SPG11 patients also exhibit other neurological problems in
addition to spasticity, for example intellectual disability

« Conventional MRI findings:
— None in the pure form
— Thinning of corpus callosum and Enlargement of ventricles in SPG11
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Contraction Expansion
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Figure 6: Fiber tracts located in regions of atrophy in the left hemisphere. AF: arcuate fasciculus; CB: cingulum bundle; CST: corticospinal tract; [FOF: inferior
fronto-occipital fasciculus; ILF: inferior longitudinal fasciculus; UF: uncinate fasciculus.




Application to Normal Brain development

DTBM changes generally correlate with FA changes but the regression
slope changes in different pathways

Amritha Nayak, Neda Sadeghi, M Okan Irfanoglu, and Carlo Pierpaoli.
Diffusion - Tensor Based Morphometry (DTBM) of Normal Human Brain Development from Infancy to Adulthood. ISMRM 2017
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Volume changes of various brain structures as function of age
(relative to volume in adults)
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FA changes of various white matter structures as function of age
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Application to Down Syndrome

Dramatic patients vs controls DTBM differences with no FA differences.

DTBM allows the identification of selective hypoplasia of fronto-pontine-
cerebellar connections

Carlo Pierpaoli , Amritha Nayak , Okan Irfanoglu , Neda Sadeghi , and Nancy Raitano-Lee
Brain morphometry using diffusion MRI data (DTBM) reveals abnormalities in Down Syndrome that are not detected by conventional
DTI analysis. ISMRM 2018



Table 1. Demographic characteristics of the sample

DS (n=15) Control (n=29)

M SD Range M SD  Range
Age 17.02 5.47 6-23 16.17 6.40 5-24
Nonverbal IQ 59.53 15,19  34-86 113.59 16.27 89-134
SES (Hollingshead) 35.87 15.62 20-63 39.71 22.24 20-115

n % n %
Sex: Female 7 47 16 55
Race: White, non-Hispanic 10 67 17 59




DTI datasets consisted of 60 volumes with 6 b=0, 12
b=300, and 42 b=1100s/mm?2. Resolution was 2.5 mm

Isotropic
Control template created using DR TAMAS
All subjects individually registered to the control template.

The the log of the determinant of the jacobian was
computed from the deformation field maps of each
individual subject warped to the control template.

TBSS and TFCE statistics were computed using FSL
randomize program.

Effect size maps were computed as follows:
(mean patients - mean controls)/ std dev of the

population
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Gray Matter
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Application to Moebius Syndrome

DTBM identifies atrophy of the Medial Longitudinal Fasciculus as a
hallmark feature of Moebius Syndrome

DTBM results allows 100% classification accuracy in differentiating
Moebius patients from controls and Congenital Facial Palsy patients

What is Moebius syndrome?

Moebius syndrome is a nonprogressive craniofacial/neurological
disorder that involves primarily the facial abducens nerve . Individuals
with Moebius syndrome cannot smile or frown, and do not have lateral
eye movements. (From http://moebiussyndrome.org)
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Figure 4: Left: schematic diagram of muscles and cranial nerves involved in eye movement, SR: superior
rectus, [O: inferior rectus, LR: lateral rectus, IR: inferior rectus, SO: superior oblique, MR: medial rectus.
Right: schematic diagram of cranial nerves and muscles involved in conjugate horizontal gaze. Motor neurons
of CN VI project ipsilaterally to LR to abduct the eye, whereas the interneurons cross the midline via medial
longitudinal fasciculus (MLF) and project contralaterally to MR to adduct the eye.
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Voxelwise significant differences (p < 0.01) on DTBM
(In red on FA map: local Det Jacobian lower in Moebius than in Controls)




High sensitivity and specificity in differentiating Moebius
Subjects (MBS) form both Controls and Congenital Facial

Weakness (CFW) subjects
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Conclusions

DTBM is a promising tool to complement
conventional analysis of diffusion MRI for
neurological applications. It has great potential
for personalized medicine. It requires “good
data” not necessarily “big data”.

Practical consideration

Prospective diffusion MRI studies should be
designed with blip-up blip-down acquisitions
including also the DWIs
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